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Mainly using available precise thermodynamic data for dilute solutions of hydrogen and deuterium in 
palladium and in the Pdc.sAga.r alloy, we show that the description of the hydrogen atoms as simple 
harmonic oscillators represents a very crude first approximation only. Similarly, the other simple models 
which have been advanced are not consistent with all the available thermodynamic data. We propose to 
consider hydrogen dissolved in metals at high temperature as a very dense liquid rather than as a gas (as is 
usually done). We have also been led to conclude that the force constant for hydrogen in fee metals should 
be slightly larger than for deuterium. 

1. Introduction 

The increasing amount of precise data, 
often based on new experimental techniques, 
has allowed a better understanding of metal- 
hydrogen systems (1-4). Until quite 
recently, the thermodynamic treatment of 
such systems generally has been based on the 
simple Lather model proposed some 40 
years ago (5). In recent years, however, it has 
become increasingly apparent that this 
model is much too crude. Even in the simple 
case of very dilute solutions, two difficulties 
have been recognized: 

1. It is not possible in a convincing way to 
explain the magnitude of the excess entropy, 
SH-R ln[(l-x)/x) (6, 7), and 
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2. The simple Einstein model is not 
consistent with the thermodynamic 
measurements of the isotope effect (a-10). 

The purpose of the present paper is to 
study the origin of these two discrepancies. 
In connection with this, we also want to 
consider the information that thermo- 
dynamic measurements can provide with 
respect to the motion of the dissolved hydro- 
gen atoms in very dilute solutions. In the 
next two sections we dicuss these problems in 
greater detail for the most extensively 
studied system, palladium-hydrogen. In 
Sections IV, V, and VI we discuss three types 
of models which have been advanced pre- 
viously, i.e., the transition toward a fluid 
state, the adoption of different force 
constants for hydrogen and deuterium, and 
the use of anharmonic potentials. In Section 
VII we finally propose a qualitative 
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representation which exhibits the correct 
behavior and allows us to make a distinction 
between solutions in fee and bee metals. 

II. The Excess Entropy 

Following O’Keeff e and Steward (1 I ) we 
shall assume that it is possible to disregard 
the coupling between the various “degrees of 
freedom” for hydrogen in a metal. We 
accordingly write for the partial molar ex- 
cess entropy of hydrogen, s”, = 
&-R ln[(l -x)/x]: 

s”, =s,+s,+s,. (1) 

Here 3, represents the vibrational contri- 
bution, ,!?* the electronic term, and & the 
degeneracy term. This last term is equal to 
zero when there is only one interstitial site 
available per metal atom. 

s1 may be divided into two parts (12): 
S1(H), which arises from vibration of the 
hydrogen atoms proper, and S,(M), which is 
due to the modification of the vibrational 
spectrum of the solvent metal, M. It is 
expected that &(H) may be calculated to a 
good approximation from the Einstein 
model. 

In Table I we summarize experimental 
values of the excess entropy (6, 12-15) for 
dilute solutions of hydrogen in palladium and 
compare the results with calculated values. 
The special difficulties which arise from the 
existence of two different localized modes in 

bee metals (16, 17) are not present in fee 
metals such as palladium. 

51(H) has been calculated from the neu- 
tron scattering data of Drexel er al. (18). 
While S1(M) is a rather complicated term to 
evaluate, the existence of such a term has 
been recognized for a long time (19). Some 
years ago Wagner (20) proposed to calculate 
this term by considering only the thermal 
expansion of the lattice. Relating this 
macroscopic approach to an earlier micro- 
scopic study of point defects by Huntington 
et al. (21), Boureau et al. (12) showed that 
Wagner’s method overestimates S,(M). The 
same conclusion was reached by Magerl et al. 
(7) on the basis of elasticity calculations (22) 
and taking into account also electron- 
phonon interactions. 

In order to evaluate S,(M), low-tempera- 
ture calorimetric (23,24) and neutron scat- 
tering data (25) have been used (6). 
Contrary to suggestions made in earlier 
studies (6, 7, 26, 27), Rowe (28) recently 
has shown that these two methods are 
in reasonable agreement. From the calcu- 
lations of Rowe, we estimate S,(M) for 
hydrogen in palladium to be about 
+0.2 cal mole-’ OK-‘. 

s2 may be calculated from low-tempera- 
ture heat capacity data by taking into account 
the change of the electronic heat capacity 
coefficient y with temperature, as deter- 
mined for pure Pd by Miiller and Brockhouse 
(29). In Table I, L% has been obtained in this 
way by assuming that 2% is the same in the 

TABLE I 

COMPARISON BETWEEN EXPERIMENTAL AND CALCULATED VALUES OF THE 
PARTIAL MOLAR EXCESS ENTROPY OF HYDROGEN IN PALLADIUM AT 

DIFFERENT TEMPERATURES~ 

Temperature Refs. &(H) !&(1(M) $, s”, (talc) 57% (exp) S; (exp) - S”, (talc) 

300 (13-15) 1.6 0.2 -0.6 1.2 2.8 1.6 
500 (6,12,15) 3.8 0.2 -0.9 3.1 5.3 2.2 
700 (6) 5.5 0.2 -1.1 4.6 7.6 3.0 

a Data in cal “K-’ mole-‘. Details of the calculation are presented in the text. 
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(Y -phase and at the lowest hydrogen content 
in the P-phase. Our values are about 25% 
less negative than those given by Oates and 
Flanagan (30), who based their estimate on 
the rigid band approximation. 

Neutron scattering experiments (31-33) 
indicate that at least up to 700°K only octa- 
hedral interstitial sites are occupied by 
hydrogen in palladium. This conclusion is 
consistent with the recent observation that 
the diffusion mechanism seems to be the 
same for hydrogen in (Y -Pd and in p -Pd (34), 
and also with the band theory calculations of 
Sholls and Smith (35). Although a slight 
degeneracy is enough to create a significant 
contribution to s”, (36), it is evident that & 
cannot be very large. It is apparent from the 
data listed in Table I that even at room 
temperature the calculated values of s”, are 
much smaller than the experimental values. 
Furthermore, the magnitude of the dis- 
crepancy increases with increasing tempera- 
ture. 

III. The Einstein Model ++h(Z’D-VH)+3N 

Dilute solutions of hydrogen in metals are 
among the several solid state examples 
where the Einstein model of atomic vibra- 
tions might be expected to hold: The hy- 
drogen atoms are located on well-separated 
interstitial sites and interact only weakly with 
each other. Moreover, the localized optical 
modes of the hydrogen atoms have frequen- 
cies well outside the acoustic band of the host 
metal. An additional favorable aspect of 
solutions of hydrogen in fee metals is the 
expected isotropic character of the hydro- 
gen vibrations referred to in Section II 
above. Therefore the assumption of a 
single vibrational frequency seems quite 
plausible. 

X h% 
exp(hvD/kT) - 1 

8SE = -3R In 
1 - exp(-hvD/kT) + hvD 
1 -exp(-hvH/kT) T 
1 

’ exp(hvD/kT) - 1 

The partition function of an Einstein 
oscillator is given by (37) 

h% 1 --x 
I T exp(hva/kT)- 1 ’ (5) 

I/H/YD = 21i2. (6) 

Here AU0 is one-half of the difference of 
the dissociation energies of gaseous mole- 
cules of HZ and D2 at 0°K. According to 
JANAF (33), AU0 is 901 cal mole -1 . 

exD(-hv/kT) Relations (2)-(5) have been used for a long 
time to calculate the vibrational frequency of 

From this relation we may readily 
calculate the experimental quantities 
SA~=A~~-A~H,SAH=A~~-A~~,and 
SF = S”, -S”,, i.e., the differences between 
the partial molar free energy, the partial 
molar enthalpy, and the partial molar excess 
entropy of hydrogen and of deuterium, 
respectively. These quantities are expressed 
as functions of the hydrogen and deuterium 
frequencies, Vu resp. Vn, by the relations: 

+;Nh(Z’D- VH) 

+3RTln I-exP(-hm/kT) 
1 -exp(-hvH/kT) 

-i T[s(H*) - s(D4, (3) 

6AH = Al&+; 
I 
oT [C,(Hz) - C,(D,)] dT 
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TABLE II 

VIBRATIONAL FREQUENCIES (IN cm-‘) FOR HYDROGEN IN PALLADIUM AND IN 
PALLADIUM-SILVER ALLOYS FROM THERMODYNAMIC MEASUREMENTS AND 

FROM NEUTRON SCATTERING EXPERIMENTS 

References” 

Neutron 
Temperature scattering 

Solvent (“IQ A$, - A& Ai&, - Ati, Ad, - AC&, value 

(12) Pd 555 635 698 746 552 
(39) Pdo.gAgo.~ 390 - - 757 565 
(10) Pdo.,&o., s55 640 723 804 565 
(10) Pdo.g&o., 700 690 783 847 565 

a Thermodynamic measurements. 

hydrogen (see, for instance, Ref. (5). In a 
recent study (10) we have applied these 
relations to experimental data for solutions 
of hydrogen and deuterium in palladium (12) 
and in the alloy PdO.sAg,.l (10,39), and have 
compared the results with frequencies 
deduced from neutron scattering work 
(18,##, 41). The data are shown in Table II. 
The essential features are: 

1. All vibrational frequencies calculated 
from thermodynamic data are larger than 
those derived from inelastic neutron scat- 
tering. 

2. In all cases there is a definite increase of 
the thermodynamically calculated frequen- 
cies with increasing temperature. 

3. There are systematic discrepancies 
between the calculated values of VAs, V&j, 
and VA& i.e., the frequencies derived from 
comparisons between the partial molar 
entropies, the partial molar enthalpies, and 
the partial molar Gibbs free energies of 
solution. In all cases, we find V& > v&j > 
VA%. As is apparent from Table III, the 
Einstein model provides a better prediction 
of 6s” than of SAI?. 

TABLE III 

COMPARISON OF EXPERIMENTAL PARTIAL MOLAR QUANTITIES FOR HYDROGEN IN PALLADIUM 
AND IN Pd,,gAgo.I WITH VALUES CALCULATED FROM SOME SIMPLE MODELSO 

A& - AI&, 3; -3; Ad, -A& 

Pd Pdo.&zo., Pd Pdo.9Ago.l Pd Pdo.&izo., 

555°K 555°K 700°K 555°K 555°K 700°K 555°K 555°K 700°K 

Experimental value 470 440 455 1.76 1.77 1.83 448 408 387 
Einstein model YH/Y~ = 2i12 619 598 644 1.83 1.81 1.90 557 546 522 
Einstein model vr.JvD = 1.53 579 554 609 2.26 2.24 2.35 276 263 176 
Free particle model 888 888 879 2.06 2.06 2.06 699 699 648 
Oates and Flanagan treatment 545 1.97 406 

0 Ai& - A& and Ad, - Af& are, respectively, the differences in partial molar enthalpies and Gibbs free 
energies of deuterium and of hydrogen (in cal mole-‘). SE D - $!i is the corresponding difference of the partial molar 
excess entropies (in Cal mole-’ OK-*). These quantities have been calculated using the Einstein frequency r& = 
552 cm-’ for hydrogen in pure palladium, and r&r = 565 cm-’ for hydrogen in Pdc,qAgo.i. The experimental data are 
taken from Refs. (10,12). 
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The two first features of these results were 
noted already by Oates and Flanagan (9), 
who showed that for solutions of hydrogen in 
palladium, VAd increases significantly from 
room temperature to 1300°K. 

IV. Transition Towards A Fluid State 

A. The Use of the Concept of Communal 
Entropy 

Kleppa et al. (42) proposed the use of the 
concept of “communal entropy” (43,44) in 
order to describe the thermodynamic 
behavior of hydrogen in metallic solutions at 
high temperatures. In this representation the 
hydrogen atoms are still basically considered 
as localized Einstein oscillators, but they 
acquire an additional entropy of R per mole 
through the removal of restrictions on their 
movement. Boureau and Kleppa (6) sugges- 
ted that the increase of the partial molar 
excess entropy of hydrogen in palladium 
between 300 and 700°K may be explained 
through such a progressive acquisition of 
communal entropy. 

In fact, this point of view is not correct 
since the communal entropy has been shown 
to be caused not by the delocalization of the 
atoms but by the restriction of having a single 
atom per cell (45). Since in metal-hydrogen 
systems this restriction remains valid even at 
high temperature, it is evident that the 
concept of communal entropy is not appro- 
priate. 

B. The Approach of T. Hill 

Hill studied the problem of the hindered 
translation of atoms on a surface (43,46), 
and proposed the existence of three different 
temperature ranges for solutions of hy- 
drogen in metals: (1) a localized oscillator 
state at low temperature, (2) a transition 
region at intermediate temperatures, and (3) 
a free particle state at high temperatures. We 
shall comment briefly on this approach which 

in various forms has been adopted in several 
recent studies (9,47, 48): 

1. Hill predicts a heat capacity maximum 
at T = Vo/R, where VO is the potential bar- 
rier between two sites. If VO is identified with 
the activation energy for diffusion, such a 
maximum should be observed near T = 
550°K. This seems to be in fair agreement 
with the observations of Boureau’ and 
Kleppa (6), who found large values of I$,(H) 
near 700°K. 

2. In spite of the fact that most of the 
volume of the metal is occupied by the 
metallic ions, it is well known that the 
number density of hydrogen atoms in hydr- 
ides is larger than in the liquid state (49). 
Moreover, a typical diffusion coefficient for 
hydrogen in a metal is about 10m4 to 
1 Om5 cm2 set-’ . This compares with values of 
the order of 1 cm* set-’ for a gas. Thus, the 
assumption that hydrogen in a metal at 
high temperature behaves somewhat like a 
perfector monatomic gas certainly is not 
correct. 

3. Recent neutron scattering studies 
(32,32) indicate that even at 700°K the time 
interval between two atomic jumps in the 
Pd-HZ system (- 1.5 x lo-‘* set) is much 
longer than the vibrational period (-6x 
lo-l4 set). Therefore, even if the assumption 
of a large fluid-like contribution to the 
entropy is accepted, it is not due to a gas-like 
motion of the atoms throughout the whole 
lattice. 

4. McLellan (48) attempted to apply the 
method proposed by Hill to describe hy- 
drogen dissolved in vanadium, niobium, 
and tantalum at 500°K. Actually, he con- 
sidered only the high-temperature limit, and 
his model is very similar to the classical 
Sackur-Tetrode treatment (50-52) of a 
monatomic gas with some assumptions 
regarding the volume available to the hydro- 
gen atoms. 

If we use the Sackur-Tetrode treatment to 
describe the free particle state, Eqs. (3)-(5) 
become simply: 
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sdd=AU,,+;[=[C,(H,)-C,(D,)1dT 
0 

-:RTln 2+iT[S(H2)-S(D2)], 

(7) 

SAE;i = A Uo +; 
s 
oT [ C,(H*) - Cp(D2)] dT, 

(8) 

SSE=$R ln2. (9) 

If these results are applied to tantalum- 
hydrogen and tantalum-deuterium at 700°K 
and compared with the recent experimental 
data for these systems of Dantzer and Kleppa 
(53), it is immediately apparent that the free 
particle model fails. This model would imply 
ABD - AHH = 878 cal mole-’ and S”, - 
S”, = 2.06 cal mole-’ “K-l. In fact the 
experimental differences are 
-220 cal mole-’ and 1.40 cal mole-’ “K-l, 
respectively. Similar discrepancies are found 
for Pd-HZ (see Table III). Clearly the free 
particle model is inappropriate for this 
system at 700°K. 

V. Failure of the Born-Oppenheimer 
Approximation in the Palladium-Hydrogen 
System 

One way of improving the agreement 
between the thermodynamic determinations 
of vn and the neutron scattering data is to 
relax the condition vrr/vn = 2i12. This finds 
support in the following observations: 

1. The 4°K tunneling experiments of 
Dynes and Garno (54) are consistent with a 
ratio vn/~n of about 1 S. 

2. The theoretical analysis of the inverse 
isotope effect by Ganguly (55-58) also is 
based on the assumption that this ratio is 
larger than 21’2. 

3. The lattice dynamics analysis of hy- 
drogen (deuterium) in palladium (P-phase) 
by Rahman etal. (59) indicates that the force 
constant is about 20% larger for hydrogen 
than for deuterium. 

On the basis of these considerations, 
Boureau ef al. (12) Set Vn/vn = 1.5 in order 
to fit their thermodynamic data. More 
recently, Oates and Flanagan (9) have used 
v~/Y,, = 1.53. Actually, as may be seen from 
Table III, the latter value does not provide a 
better agreement. This was recognized by 
Oates and Flanagan, who, as already 
mentioned, proposed to eliminate the dis- 
crepancy by assuming a soft transition for the 
hydrogen (deuterium) atoms from a localized 
oscillator state at low temperature to a free 
particle state at high temperature. 

Several objections may be made to this 
approach: 

1. The experimental observation of a ratio 
Vn/VD much larger than 21’2 also may be 
explained by assuming a hard potential well. 
In this case, the thermodynamic treatment 
would be quite different. 

2. It seems that, as far as well-localized 
excitations are concerned, the neutron scat- 
tering data so far available (18) do not 
support a ratio Vn/Vn much larger than 
about 21’2 for IY solid solutions. Hence, a 
force constant 15-20’~ larger for hydrogen 
than for deuterium does not seem realistic. 
Moreover, very recent calculations (60) 
show that such a marked breakdown of the 
Born-Oppenheimer approximation in dilute 
solutions is unlikely. 

3. As is apparent from Table III, the use 
of a ratio un/ vn significantly larger than 21’2 
actually gives rise to higher values of SS”, 
whereas the experimental values are lower 
than those calculated from the Einstein 
model. 

4. With respect to the treatment of Oates 
and Flanagan, we have already indicated 
above that doubts may be raised about its 
validity. Let us now mention another point: 
The Oates-Flanagan model predicts a larger 
value of SS” than the Einstein model, 
whereas the experimental data actually are 
lower. This discrepancy is “hidden” by the 
prediction of a value of 6AI? smaller than 
that calculated by the Einstein model, which 
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allows the model to provide a fair agreement 
for SAC?. This was the only thermodynamic 
quantity considered by Oates and Flanagan. 

VI. The Anharmonic Oscillator 

A. Use of a Soft Potential Well 

The usual simple treatment of high- 
temperature anharmonicity in crystals (61) 
assumes that the potential well in which the 
considered atom finds itself flattens in the 
directions in which there is a saddle point. 
Hence the spacing between two consecutive 
energy levels would decrease as the energy 
increases. This effect, if it were present, in 
large measure would explain the high values 
of S”, at high temperature. In fact, Magerl et 
al. (7) recently have suggested an explana- 
tion along these lines. However, our own 
calculations show that as a result, we would 
also expect to observe values of SF -SE 
slightly larger and values of AlfD-A& 
much larger than those calculated from the 
simple Einstein model. In fact, if such a 
potential were present, we would predict 
V~S>Y~A>VG. For hydrogen in palladium 
this is contrary to the experimental obser- 
vations. We also find it difficult to invoke this 
effect in order to explain the large value of 
Sn (measured) - Sn (calculated) at the low 
temperature of 300°K (see Table I). 

B. The Use of a Hard Potential Well 

Katz et al. (62) concluded that their 
measurements of the diffusion coefficients of 
hydrogen, deuterium, and tritium in nickel 
could not be fitted by assuming a single 
Einstein frequency. In order to avoid the use 
of a temperature-dependent vibrational 
frequency, they proposed the existence of a 
hard potential well, the justification of which 
is the assumption of a strong repulsion 
between the screened protons and the ion 
cores of the metal. 

The principal difficulty with the model of 
Katz et al. is that it cannot be reconciled with 

the neutron scattering studies and with the 
experimental determinations of SE : 

1. According to Drexel et al. (18), the 
motion of the protons may be approximated 
as harmonic oscillations in the [loo] direc- 
tion, i.e., in the direction in which strong 
repulsive anharmonic effects are to be 
expected from the model of Katz et al. 

2. The experimental determination of the 
two first harmonics by neutron scattering 
(18) is not consistent with the assumption of 
a large difference between the two first 
energy level spacings as predicted by the 
model of Katz et al. 

3. A direct consequence of the adoption 
of hard well potential would be a reduction of 
the excess entropy, which makes it still more 
difficult to decompose it into different 
contributions. 

VII. A Qualitative Representation 

Since we lack information on the inter- 
atomic forces between the hydrogen atoms 
and their host metal atoms (63), only a qual- 
itative treatment is possible. We propose to 
explain the large values of Sg observed in the 
Pd-Hz system (see Table I), and probably 
also present in other metal-hydrogen 
systems such as Ta-HZ (53), by considering 
the hydrogen atoms as intermediate between 
two representations: (i) Einstein oscillators, 
and (ii) Particles constrained to move only 
within a cell. The latter representation is 
equivalent to single-occupancy systems such 
as those defined by Hoover and Ree (64,65), 
in order to study the melting transition. 
Following Ree (65), the entropy, in this 
representation, will be equal to: 

& = S(H gas) - R In VW) ~ - S”(PadC) 
V&‘d) 

- AS(communa1). (10) 
In this expression, S(H) is the standard 

entropy of hydrogen gas (H), such as may be 
found in the JANAF tables, V(H) the 
normal volume of hydrogen, S”(PadC) the 



230 G. BOUREAU, 0. J. KLEPPA, AND P. D. ANTONIOU 

term calculated for a hard sphere fluid by 
Hoover and Ree, and AS(communa1) the 
communal entropy caused by the constraint 
of having only one interstitial hydrogen atom 
per interstitial site. 

The numerical value of Su depends very 
strongly on the actual values chosen for 
Vu(Pd) and for the volume of the hydrogen 
hard spheres. Both of these terms are 
somewhat arbitrary. With Vu(Pd) = 
1.8 cm3 mole-’ and V(hard sphere) = 
0.4 cm3 mole-’ , we calculate a value of Su of 
7 cal mole-’ OK-’ at 300°K. This result 
should be compared with Sr(H) = 
1.6 cal mole-’ “K-l in Table I. It is evident 
that we may explain the large value of S”, by 
assuming an intermediate state. This inter- 
pretation also seems to be consistent with 
the large anharmonic effect observed (18) 
for dilute solutions of hydrogen in palla- 
dium. 

It is of interest to note that the assumption 
of a liquid-like character of hydrogen does 
not imply a modification of the configura- 
tional entropy term R ln[(l -x)/x]. In this 
respect our representation differs from 
models based on the approach of Hill (9,46- 
48). 

On the other hand, we believe that the 
assumption of a force constant slightly larger 
for hydrogen than for deuterium (perhaps 
about 5%) is justified. We note, in particular, 
that this assumption is consistent with a well- 
known anomaly: Below 500°K deuterium is 
known to diffuse faster than hydrogen in 
palladium (66, 67). This may be explained by 
the classical theory of diffusion (68, 69) if the 
existence of a saddle point with an adjustable 
Einstein frequency is accepted (70). 
However, this point of view recently has 
been criticized (71, 72). While the origin of 
the effect is not known, let us advance a 
hypothesis: The motion of the screened pro- 
ton in the [ 1 lo] direction tends to weaken the 
metallic cohesion. Because of the large 
effective mass of the d electron in this direc- 
tion (73, 74), the repulsive force may well 

increase with the speed of the proton and 
have the character of a frictional force. 

We shall now outline how our qualitative 
representation possibly may explain ob- 
served differences between solutions of 
hydrogen in bee and fee metals (see also 
Table IV). 

In fee metals, all factors contribute to 
reduce SAH, whereas the expected stronger 
repulsion of hydrogen atoms than of deu- 
terium atoms contributes to an increase of 
SS”. The net result will be a strong decrease 
of SAH and a moderate decrease of SS” 
compared to the values calculated from the 
Einstein model. On the other hand, from 
relations (3) to (5) one finds that, at least for 
temperatures not too high, SAf? and SS” 
both decrease as the frequency increases. 
Hence, as may be expected, and this is 
confirmed by calculations for solutions in 
nickel, palladium, and PdO.gAgO.i, we have 

VAH > VAS 

TABLE IV 

COMPARISON OF DIFPERENT ESTIMATED 
CONTRIBUTIONS TO 6Afi and 8SE HYDROGEN IN 

fCC AND bee METALSO 

A. fee metals 

Fluid-like 
Larger force character 

constant more marked 
for H for H Total 

MI-7 - - - 
SP + - ? 

B. bee metals 

Fluid-like 
character 

more marked 
Soft well for H Total 

SAG + - ? 
ss + - ? 

n +, An increase of SAH or 8s”; -, a decrease 
compared to the Einstein model. 
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(i.e., the frequency calculated from 6AH is 
larger than the frequency calculated from 
SST). 

Accordingly 

The right-hand side of this inequality is equal 
to sAG(v,a). Hence 

Moreover, detailed calculations show that a 
small increase of VAfI - vAs gives rise to a 
large increase of v&. For this reason, v& is a 
less meaningful quantity than v&j and V&; 
i.e., the calculation of VAd amplifies the dis- 
crepancy between V& and YAs. This is of 
some importance because 6 AG frequently 
has been used to calculate Y (9, 75). 

For bee metals, as may be seen from Table 
IV, it is not immediately clear if &SE and SAI? 
will be smaller or larger than the values 
calculated from the Einstein model: 

1. There is still a fluid-like entropy term, 
as is confirmed by the recent work of Dantzer 
and Kleppa (53). This term will contribute to 
the decrease of both SAI? and 8s”. 

2. The potential is not harmonic but 
flattens in the diffusion direction [loo]. This 
will give rise to a moderate increase of Ss” 
and a strong increase of 6AR 

3. As already mentioned, two different 
frequencies are expected in bee metals. The 
intensity of the higher frequency, observed in 
the [loo] direction, increases with increasing 
temperature. This will give rise to a decrease 
of both 8s” and of 6AI?. 

Since the perturbing factors work in 
different directions, it is difficult to predict 
the overall result. However, for systems with 
a very low activation energy for diffusion, it 
would be expected that the influence of the 
soft well potential should be predominant. 
This seems indeed to be the case: 

From the equilibrium data of Steward (75) 
for hydrogen and deuterium in niobium, we 
Cahkite at about 65O”K, CAs = 1680 cm-‘, 

GAH = 1475 cm-‘, and ;AjdG = 1250 cm-‘. 
Moreover, CAdG decreases as the temperature 
increases. 

On the other hand, for solutions in 
tantalum, in which the activation energy for 
diffusion is larger, the different terms seem to 
cancel: Dantzer and Kleppa (53) find GAH = 
;AS = ;AG = 1350 cm-’ at 715°K. This result 
is in good agreement with the determination 
of CAdG at 400°K made by Steward (75) based 
on the equilibrium measurements of Pryde 
and Tsong (76). Even so, we believe that it 
would be erroneous to conclude from this 
that hydrogen atoms in tantalum may be 
described as isotropic harmonic oscillators. 

Summary and Conclusions 

In this paper we have attempted to 
improve our understanding of the ther- 
modynamics of the solutions of hydrogen 
and deuterium in metals and have shown that 
the previously advanced models are missing 
significant points. The following conclusions 
have been reached: 

1. Generally, the description of the hy- 
drogen atoms in dilute metallic solutions as 
simple harmonic oscillators represents only a 
crude first approximation. Even so, in cases 
where reliable neutron scattering data are 
not available, the Einstein model may be 
used to obtain an approximate value of the 
vibrational frequency. In calculating vH 

and Vb, it is desirable to use the differ- 
ences between the partial molar entropies 
of hydrogen and deuterium rather than 
the difference between the Gibbs free 
energies. 

2. The most acceptable explanation for 
the difference between the calculated and 
measured partial entropies of hydrogen is the 
existence of a liquid-like entropy contribu- 
tion; the importance of this term increases 
with increasing temperatures. Even at high 
temperatures the lattice configurational 
entropy term (Rln[( 1 -x)/x]) remains 
present. 
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3. For dilute solutions in fee metals such as 
palladium the assumption of a force constant 
slightly larger for hydrogen than for deu- 
terium seems consistent with the available 
diffusion data. It also provides a plausible 
explanation for the difference between solu- 
tions of hydrogen in fee and bee metals. 
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